Chúng tôi không thể tìm thấy kết nối internet
Đang cố gắng kết nối lại
Có lỗi xảy ra!
Hãy kiên nhẫn trong khi chúng tôi khắc phục sự cố
Agentic RAG là gì ?
📹 VIDEO TITLE 📹
What is Agentic RAG ?
✍️VIDEO DESCRIPTION ✍️
In this video, we start by revisiting Retrieval-Augmented Generation (RAG), a powerful technique that enhances language models by enabling them to retrieve external information before generating a response. RAG bridges the gap between static knowledge embedded in a model and dynamic or domain-specific information stored in external sources like vector databases. However, traditional RAG pipelines operate in a fixed, single-step retrieve-and-generate loop — limiting their ability to handle more nuanced, multi-step tasks.
Next, we explore ReAct-style agentic workflows, where an AI agent can reason step-by-step and take actions — like calling tools or issuing new queries — based on intermediate observations. These agentic workflows introduce autonomy and adaptability into the system, enabling the model to break down problems, revise its plan, and iterate toward a solution. By combining reasoning and action, agents can better tackle complex, ambiguous, or evolving queries that go beyond what a single pass can solve.
Finally, we bring these two paradigms together to introduce Agentic RAG, a next-generation architecture that fuses RAG's retrieval power with the dynamic reasoning of agents. In Agentic RAG, retrieval becomes a tool the agent can call repeatedly, using planning, reflection, and tool use to iteratively improve results. This design pattern unlocks more accurate, complete, and intelligent systems — ideal for research tasks, multi-hop QA, and any use case requiring thoughtful, tool-augmented generation.
🧑💻GITHUB URL 🧑💻
No code samples for this video
📽OTHER NEW MACHINA VIDEOS REFERENCED IN THIS VIDEO 📽
Build an MP Neuron with PyTorch - https://youtu.be/L6FrRQEe3GY
LangChain versus LangGraph - https://youtu.be/JaCSgQtziMA
Chroma versus Pinecone Vector Database - https://youtu.be/EtR6BWrCbMQ
What is the Chroma Vector Database ? - https://youtu.be/qn738hVKJe4
RAG with OpenAI & Pinecone Vector Database ? - https://youtu.be/IuXVTJm-iF8
What are LLM Function Calls ? - https://youtu.be/Nh6qoBnreBc
Embeddings with Open AI & Pinecone Vector Database - https://youtu.be/GgeoyzWBrSI
What is Hugging Face? - https://youtu.be/QvO4EnN905Y
RAG vs Fine-Tuning - https://youtu.be/AJmlg7rdmLA
What is RAG ? - https://youtu.be/SDsY9hHS9Qo
What is the Perceptron? - https://youtu.be/UeKxO-Sk0wE
What is the MP Neuron? - https://youtu.be/MBSHhsvaTjs
What is Physical AI ? - https://youtu.be/Xya21TpCog0
What is the Turing Test ? - https://youtu.be/wXMLF54AUwU
What is LLM Alignment ? - https://youtu.be/nYX73hSDEqo
What are Agentic Workflows? - https://youtu.be/CwLAtLyFiTM
Why is AI going Nuclear? - https://youtu.be/eFYy1UYzdZg
What is Synthetic Data? - https://youtu.be/34n9DxFqFc0
What is NLP? - https://youtu.be/C528qW0Zr8k
What is Open Router? - https://youtu.be/pfT6l0yMsB0
What is Sentiment Analysis? - https://youtu.be/hkmAuBWhiXs
What is Mojo ? - https://youtu.be/5uqEPn3DQl8
SDK(s) in Pinecone Vector DB - https://youtu.be/ttnPUbiLjv0
Pinecone Vector DB POD(s) vs Serverless - https://youtu.be/t7qpxjTTccc
Meta Data Filters in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Namespaces in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Fetches & Queries in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Upserts & Deletes in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
What is a Pineconde Index - https://youtu.be/IHm0-WBELTI
What is the Pinecone Vector DB - https://youtu.be/IHm0-WBELTI
What is LLM LangGraph ? - https://youtu.be/w4U3gG_C4VY
AWS Lambda + Anthropic Claude - https://youtu.be/WaxYMhNsCAk
What is Llama Index ? - https://youtu.be/vz3Z2XETpGM
LangChain HelloWorld with Open GPT 3.5 - https://youtu.be/tD335RLNYJQ
Forget about LLMs What About SLMs - https://youtu.be/Pn7a35dQq2s
What are LLM Presence and Frequency Penalties? - https://youtu.be/J66CRz6s734
What are LLM Hallucinations ? - https://youtu.be/4xmMj6UPIb4
Can LLMs Reason over Large Inputs ? - https://youtu.be/nCVjjXPIrxc
What is the LLM’s Context Window? - https://youtu.be/y5wBbDSe0cM
What is LLM Chain of Thought Prompting? - https://youtu.be/Lwn88e17u4k
Algorithms for Search Similarity - https://youtu.be/jaJd9IFlVCA
How LLMs use Vector Databases - https://youtu.be/1GT6ctTyXFo
What are LLM Embeddings ? - https://youtu.be/UShw_1NbpCw
How LLM’s are Driven by Vectors - https://youtu.be/Yl_ebS_jWZM
What is 0, 1, and Few Shot LLM Prompting ? - https://youtu.be/ckQPDM-97dM
What are the LLM’s Top-P and TopK ? - https://youtu.be/aDmp2Uim0zQ
What is the LLM’s Temperature ? - https://youtu.be/_YTnZOYxSjE
What is LLM Prompt Engineering ? - https://youtu.be/s_8Ba_UJkcA
What is LLM Tokenization? - https://youtu.be/q77s1gurXYU
What is the LangChain Framework? - https://youtu.be/dS5H-bjItqE
🔠KEYWORDS 🔠
#AgenticRAG
#RetrievalAugmentedGeneration
#RAG
#AgenticWorkflows
#ReAct
#LLM
#VectorDatabases
#AIworkflow
#LLMTools
#SemanticSearch
Dịch Vào Lúc: 2025-06-10T13:11:39Z