Chúng tôi không thể tìm thấy kết nối internet
Đang cố gắng kết nối lại
Có lỗi xảy ra!
Hãy kiên nhẫn trong khi chúng tôi khắc phục sự cố
Agentic RAG: Giảm Chi phí và Cải thiện Tốc độ Truy xuất
-
Code: https://github.com/KannamSridharKumar/youtube_misc/blob/main/agentic_retreiver.ipynb
Summary:
- Build an agentic retriever to reduce cost and improve retrieval speed in RAG systems by dynamically selecting relevant data sources.
- Use Hugging Face tools and embeddings to create the retriever, with the agent filtering data sources dynamically.
- Agent identifies the right data sources, reducing the search scope from thousands to a few relevant chunks.
- If no results appear, default to searching all data sources to ensure retrieval.
Keywords:
RAG, Agentic RAG, Hugging Face, Dynamic Data Filtering, Latency Optimization
Semantic Search, OpenAI, Vector Database, Embedding Model
#datascience #machinelearning #deeplearning #datanalytics #predictiveanalytics #artificialintelligence #generativeai #largelanguagemodels #computervision #naturallanguageprocessing #agents #transformers #embedding #graphml #graphdatascience #datavisualization #businessintelligence #optimization #montecarlosimulation #simulation #LLMs #python #aws #azure #gcp
Dịch Vào Lúc: 2025-02-25T10:40:49Z