Chúng tôi không thể tìm thấy kết nối internet
Đang cố gắng kết nối lại
Có lỗi xảy ra!
Hãy kiên nhẫn trong khi chúng tôi khắc phục sự cố
Hướng Dẫn Python RAG (với LLM cục bộ): AI cho các tệp PDF của bạn
Learn how to build a RAG (Retrieval Augmented Generation) app in Python that can let you query/chat with your PDFs using generative AI.
This project contains some more advanced topics, like how to run RAG apps locally (with Ollama), how to update a vector DB with new items, how to use RAG with PDFs (or any other files), and how to test the quality of AI generated responses.
👉 Links
🔗 GitHub: https://github.com/pixegami/rag-tutorial-v2
🔗 Basic RAG Tutorial: https://youtu.be/tcqEUSNCn8I
🔗 PyTest Video: https://youtu.be/YbpKMIUjvK8
👉 Resources
🔗 Document loaders: https://python.langchain.com/docs/modules/data_connection/document_loaders
🔗 PDF Loader: https://python.langchain.com/docs/modules/data_connection/document_loaders/pdf
🔗 Ollama: https://ollama.com
📚 Chapters
00:00 Introduction
01:06 RAG Recap
03:22 Loading PDF Data
05:08 Generate Embeddings
07:16 How To Store and Update Data
10:46 Updating Database
11:45 Running RAG Locally
15:12 Unit Testing AI Output
20:29 Wrapping Up
Dịch Vào Lúc: 2025-06-25T12:47:11Z