We can't find the internet
Attempting to reconnect
Something went wrong!
Hang in there while we get back on track
What is Agentic RAG ?
Summary
Description
📹 VIDEO TITLE 📹
What is Agentic RAG ?
✍️VIDEO DESCRIPTION ✍️
In this video, we start by revisiting Retrieval-Augmented Generation (RAG), a powerful technique that enhances language models by enabling them to retrieve external information before generating a response. RAG bridges the gap between static knowledge embedded in a model and dynamic or domain-specific information stored in external sources like vector databases. However, traditional RAG pipelines operate in a fixed, single-step retrieve-and-generate loop — limiting their ability to handle more nuanced, multi-step tasks.
Next, we explore ReAct-style agentic workflows, where an AI agent can reason step-by-step and take actions — like calling tools or issuing new queries — based on intermediate observations. These agentic workflows introduce autonomy and adaptability into the system, enabling the model to break down problems, revise its plan, and iterate toward a solution. By combining reasoning and action, agents can better tackle complex, ambiguous, or evolving queries that go beyond what a single pass can solve.
Finally, we bring these two paradigms together to introduce Agentic RAG, a next-generation architecture that fuses RAG's retrieval power with the dynamic reasoning of agents. In Agentic RAG, retrieval becomes a tool the agent can call repeatedly, using planning, reflection, and tool use to iteratively improve results. This design pattern unlocks more accurate, complete, and intelligent systems — ideal for research tasks, multi-hop QA, and any use case requiring thoughtful, tool-augmented generation.
🧑💻GITHUB URL 🧑💻
No code samples for this video
📽OTHER NEW MACHINA VIDEOS REFERENCED IN THIS VIDEO 📽
Build an MP Neuron with PyTorch - https://youtu.be/L6FrRQEe3GY
LangChain versus LangGraph - https://youtu.be/JaCSgQtziMA
Chroma versus Pinecone Vector Database - https://youtu.be/EtR6BWrCbMQ
What is the Chroma Vector Database ? - https://youtu.be/qn738hVKJe4
RAG with OpenAI & Pinecone Vector Database ? - https://youtu.be/IuXVTJm-iF8
What are LLM Function Calls ? - https://youtu.be/Nh6qoBnreBc
Embeddings with Open AI & Pinecone Vector Database - https://youtu.be/GgeoyzWBrSI
What is Hugging Face? - https://youtu.be/QvO4EnN905Y
RAG vs Fine-Tuning - https://youtu.be/AJmlg7rdmLA
What is RAG ? - https://youtu.be/SDsY9hHS9Qo
What is the Perceptron? - https://youtu.be/UeKxO-Sk0wE
What is the MP Neuron? - https://youtu.be/MBSHhsvaTjs
What is Physical AI ? - https://youtu.be/Xya21TpCog0
What is the Turing Test ? - https://youtu.be/wXMLF54AUwU
What is LLM Alignment ? - https://youtu.be/nYX73hSDEqo
What are Agentic Workflows? - https://youtu.be/CwLAtLyFiTM
Why is AI going Nuclear? - https://youtu.be/eFYy1UYzdZg
What is Synthetic Data? - https://youtu.be/34n9DxFqFc0
What is NLP? - https://youtu.be/C528qW0Zr8k
What is Open Router? - https://youtu.be/pfT6l0yMsB0
What is Sentiment Analysis? - https://youtu.be/hkmAuBWhiXs
What is Mojo ? - https://youtu.be/5uqEPn3DQl8
SDK(s) in Pinecone Vector DB - https://youtu.be/ttnPUbiLjv0
Pinecone Vector DB POD(s) vs Serverless - https://youtu.be/t7qpxjTTccc
Meta Data Filters in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Namespaces in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Fetches & Queries in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
Upserts & Deletes in Pinecone Vector DB - https://youtu.be/ztXrf88sX-M
What is a Pineconde Index - https://youtu.be/IHm0-WBELTI
What is the Pinecone Vector DB - https://youtu.be/IHm0-WBELTI
What is LLM LangGraph ? - https://youtu.be/w4U3gG_C4VY
AWS Lambda + Anthropic Claude - https://youtu.be/WaxYMhNsCAk
What is Llama Index ? - https://youtu.be/vz3Z2XETpGM
LangChain HelloWorld with Open GPT 3.5 - https://youtu.be/tD335RLNYJQ
Forget about LLMs What About SLMs - https://youtu.be/Pn7a35dQq2s
What are LLM Presence and Frequency Penalties? - https://youtu.be/J66CRz6s734
What are LLM Hallucinations ? - https://youtu.be/4xmMj6UPIb4
Can LLMs Reason over Large Inputs ? - https://youtu.be/nCVjjXPIrxc
What is the LLM’s Context Window? - https://youtu.be/y5wBbDSe0cM
What is LLM Chain of Thought Prompting? - https://youtu.be/Lwn88e17u4k
Algorithms for Search Similarity - https://youtu.be/jaJd9IFlVCA
How LLMs use Vector Databases - https://youtu.be/1GT6ctTyXFo
What are LLM Embeddings ? - https://youtu.be/UShw_1NbpCw
How LLM’s are Driven by Vectors - https://youtu.be/Yl_ebS_jWZM
What is 0, 1, and Few Shot LLM Prompting ? - https://youtu.be/ckQPDM-97dM
What are the LLM’s Top-P and TopK ? - https://youtu.be/aDmp2Uim0zQ
What is the LLM’s Temperature ? - https://youtu.be/_YTnZOYxSjE
What is LLM Prompt Engineering ? - https://youtu.be/s_8Ba_UJkcA
What is LLM Tokenization? - https://youtu.be/q77s1gurXYU
What is the LangChain Framework? - https://youtu.be/dS5H-bjItqE
🔠KEYWORDS 🔠
#AgenticRAG
#RetrievalAugmentedGeneration
#RAG
#AgenticWorkflows
#ReAct
#LLM
#VectorDatabases
#AIworkflow
#LLMTools
#SemanticSearch
Translated At: 2025-06-10T13:11:39Z